Compact fiber-based multi-photon endoscope working at 1700 nm
نویسندگان
چکیده
منابع مشابه
1700 nm dispersion managed mode-locked bismuth fiber laser
We demonstrate the first 1.7 μm bismuth-doped fiber laser generating ultrashort pulses via passive mode-locking. Pulse operation has been achieved for both anomalous and normal dispersion of the laser cavity owing to broadband characteristics of carbon nanotube saturable absorber. The laser delivered 1.65 ps pulses in net anomalous dispersion regime. In normal dispersion regime, the laser deliv...
متن کاملDesign of flexible multi-mode fiber endoscope.
Multi-mode fiber (MMF) endoscopes are extremely thin and have higher spatial resolution than conventional endoscopes; however, all current MMF endoscope designs require either that the MMF remain rigid during insertion and imaging or that the orientation of the MMF be known. This limits their possible medical applications. We describe an MMF endoscope design that allows the MMF to be arbitraril...
متن کاملUltra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber.
Rigid endoscopes like graded-index (GRIN) lenses are known tools in biological imaging, but it is conceptually difficult to miniaturize them. In this letter, we demonstrate an ultra-thin rigid endoscope with a diameter of only 125 μm. In addition, we identify a domain where two-photon endoscopic imaging with fs-pulse excitation is possible. We validate the ultra-thin rigid endoscope consisting ...
متن کاملA 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band
It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems ("capacity cru...
متن کاملFiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency.
We developed a fiber-coupled superconducting nanowire single-photon detector system in a close-cycled cryocooler and achieved 24% and 22% system detection efficiencies at wavelengths of 1550 and 1315 nm, respectively. The maximum dark count rate was approximately 1000 counts/s.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Optics Express
سال: 2018
ISSN: 2156-7085,2156-7085
DOI: 10.1364/boe.9.002326